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Orthogonality relation for a three-dimensional scattering electromagnetic field
in a dispersive medium
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Hitachi 316-8511, Japan
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Considering a scattering field by a perfectly conducting sphere as a typical example, we develop a method
to derive an orthogonality relation for a three-dimensional scattering electromagnetic field in a dispersive
dielectric medium. Each orthogonal mode is composed of the doublet of the incident plane field and the
scattering spherical plane field. The scattering field includes the near field in the vicinity of the scatterer.
Expanding the total field energy stored in the whole space using the derived orthogonality relation, we show
that the total field energy is expressed as the sum of the energies of independent harmonic oscillators.

PACS number~s!: 41.20.Jb, 42.25.Bs
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I. INTRODUCTION

The orthonormal set of plane electromagnetic waves
homogeneous nondispersive medium, such as a vacuu
well known for providing a basis for obtaining the photo
picture of electromagnetic waves under cyclic boundary c
ditions on the wall of a medium with cubic spatial volum
Here, the field energy is expressed as the sum of the ene
of independent harmonic oscillators with the use of the
thogonal set. The photon picture of the electromagnetic fi
in a dispersive medium has also been developed in infi
transparent dielectrics@1#, in nonlinear and inhomogeneou
transparent dielectrics under the approximation of slow
varying amplitude@2#, and in dielectric media that exhib
both loss and dispersion in an infinite medium@3#. However,
if we are concerned with evanescent waves having a p
imaginary wave vector in the direction of propagation, w
cannot apply the above method to obtain the orthonormal
Concerning this, a pioneering work has been performed
the quantization of the evanescent waves appearing as
sult of the total reflection at a plane boundary@4#. Here it
was shown that the triplet of the incident, reflected, and e
nescent transmitted plane waves composed an orthono
set. Expanding the above concept, we have also derive
extended orthonormal relation for the evanescent elec
magnetic fields in a dispersive medium with a dielectric co
stant«~v! in which the dispersive property]«~v!/]v of the
dielectric medium was taken into account@5#.

In the present paper, we further develop a generali
method by which to derive an orthonormal set for comp
scattering fields in a dispersive medium; considering a s
tering field by a perfectly conducting sphere immersed i
dispersive medium as a typical illustration, we demonstra
method to derive the orthonormal set. Here, each ortho
mal set is composed of the doublet of the incident pla
wave and its scattering spherical one. The near field in
vicinity of the scatterer is also taken into account in the sc
tering field. By using the derived relation, we expand t
total field energy stored in the whole space and show that
total field energy is expressed as the sum of the energie
independent harmonic oscillators.
PRE 611063-651X/2000/61~6!/7134~8!/$15.00
a
, is

-

ies
-
ld
te

y

re

et.
n
re-

-
al

an
o-
-

d
x
t-
a
a
r-
e
e
t-

e
of

II. SPHERICAL MODE FUNCTIONS OF THE
ELECTROMAGNETIC FIELD

Let us consider the scattering problem shown in Fig.
where a perfectly conducting sphere with radiusa is embed-
ded in a homogeneous, lossless, dispersive dielectric
dium. The dielectric constant« of the medium thus depend
on the angular frequencyv as

«5«~v!>«0 . ~1!

A plane electromagnetic wave is assumed to propag
with a wave vectork5k(sinu0 cosf0,sinu0 sinf0,cosu0),
where k is always a positive real number,u0 , f0 are the
direction angles ofk, and

k25uku25v2«m0 . ~2!

The plane wave incident on the perfectly conducti
sphere is scattering. Therefore, the total electromagnetic
in the whole space is composed of the incident field and
scattering one. The total electric fielde(k,r ) and the total
magnetic fieldb(k,r ) each include the incident field labele
by the superscripti and the scattering field labeled by th
superscripts,

e~k,r !5ei~k,r !1es~k,r !,
~3!

b~k,r !5bi~k,r !1bs~k,r !,

It is well known that the above terms for the fields can
expanded into the sum of spherical harmonic functions
follows when the spherical coordinate is composed ofr, u, f,
wherer5r (sinu cosf,sinu sinf,cosu). Here the amplitude
of the incident electric field is normalized@6#,
7134 ©2000 The American Physical Society
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FIG. 1. Electromagnetic field scattered by
perfectly conducting sphere.
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ikr

3F2 (
m51

n
~n2m!!m

~n1m!!

Pn
m~cosu0!
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A~2p!3
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br
i ~k,r !52

1
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n51

`

~2 i !n~2n11!
k

v

j n~kr !

ikr

3FdPn~cosu0!

du0
Pn~cosu!

12 (
m51

n
~n2m!!

~n1m!!

dPn
m~cosu0!

du0

3Pn
m~cosu!cosm~f2f0!G , ~7!

bu~k,r !5bu
i ~k,r !1bu

s~k,r !

5
1

A~2p!3

k

v
F@~B2MD !Y31~NC2A!Y4#,

~8!
bf~k,r !5bf
i ~k,r !1bf

s ~k,r !

52
1

A~2p!3

k

v
F@~B2MD !Y11~NC2A!Y2#,

~9!

where 1/A(2p)3 is a factor introduced for calculating con
venience,A, B, C, D, andF are expressed as

A5

d

dr
@r j n~kr !#

ikr
, B5 j n~kr !,

~10!

C5

d

dr
@rhn

~2!~kr !#

ikr
, D5hn

~2!~kr !,

F5 (
n51

`

~2 i !n
~2n11!

n~n11!
, ~11!

coefficientsM and N are determined in order to satisfy th
boundary condition of the electric field on the surface of t
perfectly conducting sphereei ur 5a1esur 5a50,

M5

d

dr
@r j n~kr !#

d

dr
@rhn

~2!~kr !#
U

r 5a

, N5
j n~kr !

hn
~2!~kr !

U
r 5a

, ~12!

and

Y152 (
m51

n
~n2m!!m

~n1m!!

Pn
m~cosu0!

sinu0

dPn
m~cosu!

du

3sinm~f2f0!, ~13!

Y252 (
m51

n
~n2m!!m

~n1m!!

dPn
m~cosu0!

du0

Pn
m~cosu!

sinu

3sinm~f2f0!, ~14!
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Y352 (
m51

n
~n2m!!m2

~n1m!!

Pn
m~cosu0!

sinu0

Pn
m~cosu!

sinu

3cosm~f2f0!, ~15!

Y45
dPn~cosu0!

du0

dPn~cosu!

du

12 (
m51

n
~n2m!!

~n1m!!

dPn
m~cosu0!

du0

dPn
m~cosu!

du

3cosm~f2f0!. ~16!

Here j n(kr) are the spherical Bessel functions,hn
(2)(kr)

are the spherical Hankel functions,Pn(cosu) are the Leg-
endre functions, andPn

m(cosu) are the associated Legend
functions, wherem andn are integers, i.e.,m51,2,3,...,n and
n51,2,3,... . The near field around the sphere is represe
by the field component having the higher orderr dependence
r 2n, n52,3,... .
ed

III. ORTHOGONALITY RELATION

Using the electromagnetic field functions given by Eq
~4!–~9!, we first calculate the quantitySr ,

Sr5
1

m0
@~eu83bf* 2ef8 3bu* !1~eu* 3bf8 2ef* 3bu8!#,

~17!

whereSr is the radial component of the vectorS,

S5
1

m0
~e83b* 1e* 3b8!. ~18!

Here e8 ~or b8! is the electric~or magnetic! field given
also by Eqs.~4!–~9! with wave vectork8 and frequencyv8,
and* denotes the complex conjugate. Then, using Eqs.~4!–
~9! and~17!, we obtain the following equations~see Appen-
dixes A and B!:
*“•Sdr

i ~v2v8!
5 lim

r→`

*0
2pdf*0

pSrr
2 sinudu

i ~v2v8!

5
1

4pk2 H (
n51

`
2n11

n~n11! F ~112uM u22M2M* !2 (
m51

n
~n2m!!m2

~n1m!!

Pn
m~cosu0!

sinu0

Pn
m~cosu08!

sinu08
cosm~f02f08!

1~112uNu22N2N* !S Pn
1~cosu0!Pn

1~cosu08!

12 (
m51

n
~n2m!!

~n1m!!

dPn
m~cosu0!

du0

dPn
m~cosu08!

du08
D cosm~f02f08!G J ]v2«

v]v
d~k2k8! ~19!

5
1

4pk2 H (
n51

`
2n11

n~n11! F Pn
1~cosu0!Pn

1~cosu08!

12 (
m51

n
~n2m!!

~n1m!! S m2
Pn

m~cosu0!

sinu0

Pn
m~cosu08!

sinu08
1

dPn
m~cosu0!

du0

dPn
m~cosu08!

du08
D cosm~f02f08!G J

3
]v2«

v]v
d~k2k8! ~20!

5
1

k2 sinu0

]v2«

v]v
d~k2k8!d~u02u08!d~f02f08!. ~21!
i-
On the other hand, starting from Maxwell’s equations,

“3e5 ivb,
1

m0
“3b52 iv«e, ~22!

we obtain
“•S

i ~v2v8!
5

v«2v8«8

v2v8
e8•e* 1

1

m0
b8•b* . ~23!

The combination of Eqs.~21! and~23! yields an orthogo-
nality relation of the electromagnetic field consisting of inc
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dent and scattering fields,

E S v«2v8«8

v2v8
e8•e* 1

1

m0
b8•b* Ddr

5
*“•Sdr

i ~v2v8!

5
1

k2 sinu0

]v2«

v]v
d~k2k8!d~u02u08!d~f02f08!

5
]v2«

v]v
d~k2k8!. ~24!

IV. EXPANSION OF THE FIELD ENERGY

Let us assume that the electromagnetic field is given a
superposition of the fields with various wave vectorsk,

E~r ,t !5E
2`

`

dk Cke~k,r !e2 iv~k!t,

~25!

B~r ,t !5E
2`

`

dk Ckb~k,r !e2 iv~k!t.

Here Ck denotes complex amplitudes, ande(k,r ) and
b(k,r ) are defined by Eqs.~4!–~9!. In order to assure the rea
property of the field, E(r ,t)5E* (r ,t) and B(r ,t)
5B* (r ,t), we introduce the definitions

C2k[Ck* , v~2k![2v~k!, ~26!

and apply the equations

e~2k,r !5e* ~k,r !, b~2k,r !5b* ~k,r !, ~27!

which are shown by the analytic continuation of the fie
given by Eqs.~4!–~9! with the wave vectork into those with
the wave vector2k @7#.

The electric field energyWE stored in the medium is ex
pressed as

]

]t
WE[E

2`

`

E~r ,t !
]D~r ,t !

]t
dr , ~28!

whereD(r ,t) is the electric field displacement given by

D~r ,t !5E
2`

`

dk «~v!e~k,r !Cke
2 iv~k!t. ~29!

Using Eqs.~25! and ~29!, we obtain~see Appendix C!,

WE5
1

2 E Ck8Ck* ei ~v2v8!tdk dk8E v«2v8«8

v2v8
e8•e* dr .

~30!

In addition, the magnetic energyWB stored in the whole
space is expressed as

WB5
1

2 E Ck8Ck* ei ~v2v8!tdk dk8E 1

m0
b8•b* dr . ~31!
a

Therefore, the total field energyW stored in the dispersive
medium is the sum ofWE andWB ,

W5WE1WB5
1

2 E Ck8Ck* ei ~v2v8!tdk dk8

3E S v«2v8«8

v2v8
e8•e* 1

1

m0
b8•b* Ddr . ~32!

Applying the derived orthogonal relation given by E
~24! to Eq. ~32!, the total field energy can be rewritten as

W5
1

2 E CkCk*
]v2«

v]v
dk. ~33!

Furthermore, if we introduce normalized amplitudesak
andak* as

ak5A 1

2\v

]v2«

v]v
Ck , ak* 5A 1

2\v

]v2«

v]v
Ck* ,

~34!

then the total field energy of the electromagnetic field co
sisting of incident and scattering fields can be expressed

W5E \v~k!akak* dk. ~35!

Equation~35! shows that the total field is given by the su
of the energies of independent harmonic oscillators.

V. CONCLUSION

Considering a typical three-dimensional scattering el
tromagnetic field in a dispersive medium, we derived an
thogonality relation between fields with different wave ve
tors. Here the doublet of incident and scattering fie
comprised an orthonormal set. Expanding the electrom
netic field energy stored in the whole space using the deri
orthogonality relation, we showed that the total field ener
was expressed as the sum of the energies of indepen
harmonic oscillators. The above result will be useful f
studying the quantal interaction between a scattering elec
magnetic field and an atom.

APPENDIX A: AN EXPRESSION OF THE d FUNCTIONS
IN SPHERICAL COORDINATES

Let us derive an expression of thed function in spherical
coordinates. Under the Cartesian coordinates, a plane e
tromagnetic field in a dispersive dielectric can be written

e5
1

A~2p!3
êeik•r2 iv~k!t, b5

1

A~2p!3

1

v
k3êeik•r2 iv~k!t,

~A1!

whereê is the unit vector,k5(kx ,ky ,kz) is the wave vector
which is a function of angular frequencyv, and its absolute
square is given by

k25uku25v2«m0 . ~A2!

Using the equation
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E ei ~k2k8!•rdr52pd~k2k8!, ~A3!

we obtain the following equation:

*“•Sdr

i ~v2v8!
5

]v2«

v]v
d~kx2kx8!d~ky2ky8!d~kz2kz8!

5
]v2«

v]v
d~k2k8!, ~A4!

whereS is defined by Eq.~18!, ande8 andb8 are defined by
Eq. ~A1! with the wave vectork85(kx8 ,ky8 ,kz8).

Under spherical coordinates, Eq.~A4! can be transformed
into

*“•Sdr

i ~v2v8!
5

]v2«

v]v

1

k2 sinu0
d~k2k8!d~u02u08!d~f02f08!,

~A5!

where the wave vectorsk and k8 are expressed
as k5k(sinu0 cosf0,sinu0 sinf0,cosu0) and k8
5k8(sinu08 cosf08 ,sinu08 sinf08 ,cosu08), where cosu0, cosf0,
cosu08 , and cosf08 are the direction cosines ofk and k8,
respectively.

On the other hand, the plane electromagnetic field gi
by Eq. ~A1! can be expanded into the sum of the spheri
harmonic functions similar to Eqs.~4!–~9!,
n
l

er~k,r !5
1

A~2p!3 (
n51

`

~2 i !n~2n11!
j n~kr !

ikr

3F2 (
m51

n
~n2m!!m

~n1m!!

Pn
m~cosu0!

sinu0
Pn

m~cosu!

3sinm~f2f0!G , ~A6!

eu~k,r !5
1

A~2p!3
F~AY12BY2!, ~A7!

ef~k,r !5
1

A~2p!3
F~AY32BY4!, ~A8!

br~k,r !52
1

A~2p!3 (
n51

`

~2 i !n~2n11!
k

v

j n~kr !

ikr

3FdPn~cosu0!

du0
Pn~cosu!

12 (
m51

n
~n2m!!

~n1m!!

dPn
m~cosu0!

du0
Pn

m~cosu!

3cosm~f2f0!G , ~A9!

bu~k,r !5
1

A~2p!3

k

v
F~BY32AY4!, ~A10!

bf~k,r !52
1

A~2p!3

k

v
F~BY12AY2!. ~A11!

SubstitutingA, B, F, Y1 , Y2 , Y3 , andY4 defined by Eqs.
~10!–~16! into Eq. ~A4! and using Eq.~17!, we have
*“•Sdr

i ~v2v8!
5 lim

r→`

*0
2pdf*0

pSrr
2 sinudu

i ~v2v8!

5
1

k2

]v2«

v]v
d~k2k8!

1

4p H (
n51

`
2n11

n~n11! F Pn
1~cosu0!Pn

1~cosu08!

12 (
m51

n
~n2m!!

~n1m!! S m2
Pn

m~cosu0!

sinu0

Pn
m~cosu08!

sinu08
1

dPn
m~cosu0!

du0

dPn
m~cosu08!

du08
D cosm~f02f08!G J .

~A12!

The results of Eqs.~A5! and ~A12! must be the same, so that we obtain an expression of thed function as
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(
n51

`
2n11

n~n11! F Pn
1~cosu0!Pn

1~cosu08!

12 (
m51

n
~n2m!!

~n1m!! S m2
Pn

m~cosu0!

sinu0

Pn
m~cosu08!

sinu08
1

dPn
m~cosu0!

du0

dPn
m~cosu08!

du08
D cosm~f02f08!G

5
4p

sinu0
d~u02u08!d~f02f08!. ~A13!

APPENDIX B: THE CALCULATION OF “"S

The quantitySr defined by Eq.~17! can be obtained from Eqs.~4!–~9! as

Sr5
1

m0
@~eu83bf* 2ef8 3bu* !1~eu* 3bf8 2ef* 3bu8!# ~B1!

52F8F* H S k

vm0
~A82M 8C8!~B* 2M* D* !1

k8

v8m0
~A* 2M* C* !~B82M 8D8! D ~Y18Y11Y38Y3!

1S k

vm0
~N8D82B8!~N* C* 2A* !1

k8

v8m0
~N* D* 2B* !~N8C82A8! D ~Y28Y21Y48Y4!

1S k

vm0
~A82M 8C8!~N* C* 2A* !1

k8

v8m0
~N* D* 2B* !~B82M 8D8! D ~Y18Y21Y38Y4!

1S k

vm0
~N8D82B8!~B* 2M* D* !1

k8

v8m0
~A* 2M* C* !~N8C82A8! D ~Y28Y11Y48Y3!J , ~B2!

whereA8, B8, C8, D8, F8, M 8, N8, Y18 , Y28 , Y38 andY48 are given by replacingk, u0 , f0 , n, andm in Eqs.~11! and~13!–~16!
with k8, u08 , f08 , n8, andm8.

By using the orthogonality relations,

E
0

2p

sinm8~f2f08!sinm~f2f0!df5E
0

2p

cosm8~f2f08!cosm~f2f0!df5H p cosm~f02f08!, m5m8

0, mÞm8 ,
~B3!

E
0

pS dPn
m~cosu!

du

dPn8
m

~cosu!

du
1m2

Pn
m~cosu!

sinu

Pn8
m

~cosu!

sinu
D sinudu5H 2~n1m!!n~n11!

~n2m!! ~2n11!
, n5n8

0, nÞn8 ,

~B4!

and the identity

E
0

pS Pn8
m

~cosu!
dPn

m~cosu!

du
1Pn

m~cosu!
dPn8

m
~cosu!

du
D du50, ~B5!

we obtain the integral of Sr over a spherical surface;

E
0

2p

dfE
0

p

Sr sinudu52 (
n51

`
4p~2n11!

n~n11! H S k

vm0
~A82M 8C8!~B* 2M* D* !1

k8

v8m0
~A* 2M* C* !~B82M 8D8! D

32 (
m51

n
~n2m!!m2

~n1m!!

Pn
m~cosu0!

sinu0

Pn
m~cosu08!

sinu08
cosm~f082f0!

1S k

vm0
~N8D82B8!~N* C* 2A* !1

k8

v8m0
~N* D* 2B* !~N8C82A8! D

3S dPn~cosu0!

du0

dPn~cosu08!

du08
12 (

m51

n
~n2m!!

~n1m!!

dPn
m~cosu0!

d u0

dPn
m~cosu08!

du08
cosm~f082f0!D J .

~B6!
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Considering further the following equations:

lim
r→`

A5 lim
r→`

d

dr
@r j n~kr !#

ikr
5 lim

r→`

i

sinS kr2
n11

2
p D

kr
, ~B7!

lim
r→`

B5 lim
r→`

j n~kr !5 lim
r→`

cosS kr2
n11

2
p D

kr
, ~B8!

lim
r→`

C5 lim
r→`

d

dr
@rhn

~2!~kr !#

ikr
52 lim

r→`

i n11
e2 ikr

kr
, ~B9!

lim
r→`

D5 lim
r→`

hn
~2!~kr !)5 lim

r→`

i n11
e2 ikr

kr
, ~B10!

lim
r→`

sin~k2k8!r

k2k8
5pd~k2k8!, lim

r→`

ei ~k2k8!r

i ~k2k8!
5pd~k2k8!, ~B11!

we obtain from Eq.~B6!,

*“•Sdr

i ~v2v8!
5 lim

r→`

*0
2pdf*0

pSrr
2 sinu du

i ~v2v8!

5
1

4pk2 H (
n51

`
2n11

n~n11! F ~112uM u22M2M* !2 (
m51

n
~n2m!!m2

~n1m!!

Pn
m~cosu0!

sinu0

Pn
m~cosu08!

sinu08
cosm~f02f08!

1~112uNu22N2N* !S Pn
1~cosu0!Pn

1~cosu08!12 (
m51

n
~n2m!!

~n1m!!

dPn
m~cosu0!

du0

dPn
m~cosu08!

du08
D cosm~f02f08!G J

3
]v2«

v]v
d~k2k8!. ~B12!

Applying the equation

hn
~2!~kr !1hn

~2!* ~kr !52 j n~kr ! ~B13!

and substituting the equations from Eq.~12!,

2uM u22M2M* 5F 2F d

dr
@r j n~kr !#G2

d

dr
@rhn

~2!~kr !#
d

dr
@rhn

~2!* ~kr !#

2

d

dr
@r j n~kr !#

d

dr
@rhn

~2!~kr !#

2

d

dr
@r j n~kr !#

d

dr
@rhn

~2!* ~kr !#
G

r 5a

50, ~B14!

2uNu22N2N* 5F 2@ j n~kr !#2

hn
~2!~kr !hn

~2!* ~kr !
2

j n~kr !

hn
~2!~kr !

2
j n~kr !

hn
~2!* ~kr !

G
r 5a

50, ~B15!

into Eq. ~B12!, Eq. ~B12! can be rewritten as

*“•Sdr

i ~v2v8!
5

1

4pk2

]v2«

v]v
d~k2k8!H (

n51

`
2n11

n~n11! F Pn
1~cosu0!Pn

1~cosu08!

12 (
m51

n
~n2m!!

~n1m!! S m2
Pn

m~cosu0!

sinu0

Pn
m~cosu08!

sinu08
1

dPn
m~cosu0!

du0

dPn
m~cosu08!

du08
D cosm~f02f08!G J . ~B16!
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According to Eq.~A13! derived in Appendix A, the final result shown by Eq.~21! is obtained,

*“•Sdr

i ~v2v8!
5

1

k2 sinu0

]v2«

v]v
d~k2k8!d~u02u08!d~f02f08!. ~B17!

APPENDIX C: THE ELECTRIC ENERGY IN A DISPERSIVE MEDIUM

From Eq.~29!, the following equation can be obtained:

]D~r ,t !

]t
5E

2`

`

dk Cke
2 iv~k!t~2 iv«!e~k,r !. ~C1!

Using Eqs.~25! and ~C1!, and«(2k)5«(k)5«* (k) because of the lossless effect of the medium, we obtain

E~r ,t !
]D~r ,t !

]t
5

1

2 S E8~r ,t !
]D* ~r ,t !

]t
1E* ~r ,t !

]D8~r ,t !

]t D
5

1

2 E2`

`

dk dk8Ck* Ck8e
2 i @v~k8!2v~k!#t~ iv«2 iv8«8!e* ~k,r !•e~k8,r ! ~C2!

and therefore, Eq.~30! can be derived as

WE5E drE
2`

t

E~r ,t !
]D~r ,t !

]t
dt

5
1

2 E2`

`

dk dk8Ck* Ck8e
2 i @v~k8!2v~k!#tE v«2v8«8

v2v8
e* ~k,r !•e~k8,r !dr , ~C3!

where the field energy density is assumed to vanish att52`.
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