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Orthogonality relation for a three-dimensional scattering electromagnetic field
in a dispersive medium
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Considering a scattering field by a perfectly conducting sphere as a typical example, we develop a method
to derive an orthogonality relation for a three-dimensional scattering electromagnetic field in a dispersive
dielectric medium. Each orthogonal mode is composed of the doublet of the incident plane field and the
scattering spherical plane field. The scattering field includes the near field in the vicinity of the scatterer.
Expanding the total field energy stored in the whole space using the derived orthogonality relation, we show
that the total field energy is expressed as the sum of the energies of independent harmonic oscillators.

PACS numbd(s): 41.20.Jb, 42.25.Bs

I. INTRODUCTION II. SPHERICAL MODE FUNCTIONS OF THE
ELECTROMAGNETIC FIELD

The orthonormal §et of _plane eI_ectromagnetic waves in & | et us consider the scattering problem shown in Fig. 1,
homogeneous nond!sperswe m_edlum, su<_:h_ as a vacuum, j8 oo o perfectly conducting sphere with radiuis embed-
well known for providing a basis for obtaining the photon geq in a homogeneous, lossless, dispersive dielectric me-

picture of electromagnetic waves under cyclic boundary congium. The dielectric constant of the medium thus depends
ditions on the wall of a medium with cubic spatial volume. o, the angular frequenay as

Here, the field energy is expressed as the sum of the energies

of independent harmonic oscillators with the use of the or-

thogonal set. The photon picture of the electromagnetic field e=¢e(w)=¢,. (1)

in a dispersive medium has also been developed in infinite

transparent dielectricgl], in nonlinear and inhomogeneous

transparent dielectrics under the approximation of slowly A plane electromagnetic wave is assumed to propagate

varying amplitude[2], and in dielectric media that exhibit with a wave vectork=Kk(sin ,cosdy,siné,sin ¢,,c0s6by),

both loss and dispersion in an infinite medi{®). However, wherek is always a positive real numbeé,, ¢, are the

if we are concerned with evanescent waves having a purdirection angles ok, and

imaginary wave vector in the direction of propagation, we

cannot apply the above method to obtain the orthonormal set.

Concerning this, a pioneering work has been performed on k?=k|*= w?e pg. (2

the quantization of the evanescent waves appearing as a re-

sult of the total reflection at a plane bounda#. Here it o _

was shown that the triplet of the incident, reflected, and eva- 1he plane wave incident on the perfectly conducting

nescent transmitted plane waves composed an orthonorm_%ﬂ’here is scatterlng._ Therefore, the total_ele_:ctrom_agnetlc field

set. Expanding the above concept, we have also derived 4 (e whole space is composed of the incident field and the

extended orthonormal relation for the evanescent electrasCaltering one. The total electric fietfk,r) and the total

magnetic fields in a dispersive medium with a dielectric con-magnetic fieldo(k,r) each include the incident field labeled

stants(w) in which the dispersive propert§(w)/do of the by the sgperscrlpt and the scattering field labeled by the

dielectric medium was taken into accousi. superscrips,
In the present paper, we further develop a generalized

method by which to derive an orthonormal set for complex .

scattering fields in a dispersive medium; considering a scat- e(k,r)=€(k,r)+e(k,r),

tering field by a perfectly conducting sphere immersed in a (©)

dispersive medium as a typical illustration, we demonstrate a ,

method to derive the orthonormal set. Here, each orthonor- b(k,r)=b'(k,r)+b%k,r),

mal set is composed of the doublet of the incident plane

wave and its scattering spherical one. The near field in the

vicinity of the scatterer is also taken into account in the scat- It is well known that the above terms for the fields can be

tering field. By using the derived relation, we expand theexpanded into the sum of spherical harmonic functions as

total field energy stored in the whole space and show that thtollows when the spherical coordinate is composed, &f ¢,

total field energy is expressed as the sum of the energies @fherer =r(sin #cos¢,sin§sin ¢,cosh). Here the amplitude

independent harmonic oscillators. of the incident electric field is normalizdé],
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FIG. 1. Electromagnetic field scattered by a
perfectly conducting sphere.

by(k,r)= b'd)(k r)+b (k,r)

1 k
=— 2 ZF[(B_ MD)Y;+(NC—A)Y,],

(€)

where 14/(27)° is a factor introduced for calculating con-
venienceA, B, C, D andF are expressed as

d_
a[” n(kr)]

A=——r— B=ia(kn),
(10)
d
—[rh{&(kr)]
4 D=h?(kr)
ikr ’ n ’
2n+1
F= E(—w“f](nﬂ)) (11)

coefficientsM and N are determined in order to satisfy the
boundary condition of the electric field on the surface of the
perfectly conducting sphe®|,_,+€*|,-,=0,

d .
d 2) , ~hP(kn)| 12
grlrhi?(kn]

r=a

and

(n—m)!'m P'(cosé,) dP;'(cosh)
sin 6, de

V=23

m=1 (n+m)!

Xsinm(¢— ¢y), (13

n

=23 (n—m)!'m dP}'(cosé,) P;'(cos6)
m=1 (n+m)! dé, siné

Xsinm(¢_ ¢O)| (14)
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n

Y3=22,

m=1

X cosm(¢— ¢y), (15)

(n—m)!'m? P]'(cosé,) Pp(cosh)
(n+m)! siné, sing

_ dPy(cosbp) dPy(cos6)
4 dey de

22”: (n—m)! dP™(cosf,) dPM(cos6)
- =1 (n+m d00 d0

X cosm(¢— ¢yg).

Here j,(kr) are the spherical Bessel functiors?) (kr)

(16)

are the spherical Hankel functionB,,(cosé) are the Leg-
endre functions, an®,'(cos#) are the associated Legendre

functions, wheren andn are integers, i.em=1,2,3,...n and

n=123,...

MASAHIRO AGU AND JINGBO LI

PRE 61

IIl. ORTHOGONALITY RELATION

Using the electromagnetic field functions given by Egs.
(4)—(9), we first calculate the quantit$, ,

1
Srzﬂ—o[(e;x b} —e;,xbj)+(ef Xby—ejxby)],
(17

whereS; is the radial component of the vect8y

1
S=— (&' Xb*+e* xXb’').

(18)
Mo

Here e’ (or b’) is the electric(or magneti¢ field given
also by Eqgs(4)—(9) with wave vectoik’ and frequency’,

. The near field around the sphere is representeahd* denotes the complex conjugate. Then, using Efjs-

by the field component having the higher ordelependence (9) and(17), we obtain the following equationsee Appen-

"'n=23,....
[V-Sdr  [§7d¢[gSr?sin6do
(o—w") [, i(w—w")

1 2 2n+1
C4ak? | &1 n(n+1)

n

dixes A and B:

(n—m)!'m? P](cosé,) P'(cos6y)

(1+2|M]Z=M—M*)2 >,

cosm(¢o— ¢g)

w1 (n+m)! siné, sin
+(1+2|N|2—N—N*)( P1(cosby) PL(cosh})
n m m ' 2
(n—m)! dP;'(cosby) dP,(cosby) L || do%e ,
Y22 T dde do, | CoSm( o o) | (o Slk—K') (19
477k2[ 21 n(n+1) PL(cosfy)PL(coshy)
n m m ’ m m ’
n—m)! P '(coshy) P, (cosd)) dP,'(cosfy) dP.'(cosb;)
22 ( o, n(C0S6o) Pn(COS%, n o) dFncosb coSm( do— b))
=1 (n+m)! sin 6, sin 0, dé, dé,
28 sk 20
9 KK (20
_ L% ks 5 i 21
~iZsindy wiw ( )8( 60— 65) 8(po— o). (21)
On the other hand, starting from Maxwell's equations, V-S we—w's' 1
. —= —e' -e*+—Db'-b*. (23
(w—w") w—o Mo

1
—V Xb=—-liwee,
Mo

VXe=iwb, (22

we obtain

The combination of Eqg21) and(293) yields an orthogo-
nality relation of the electromagnetic field consisting of inci-
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dent and scattering fields, Therefore, the total field energdy stored in the dispersive
medium is the sum ofVg andWg,
we—w'e’ 1
J (ﬁe“e“r—b“b* dr 1 ) ,
©-o Ko W:WE+WB:§f CiCrel@ @ dk dk’
JV.-sdr
= we—w'e’ 1
(w—o') xf ——— €&+ b -b*|dr. (32
1 dw’e , , , Ho
= Zsinfy wiw O(k—=k")8( 60— 05) 5(po— o) Applying the derived orthogonal relation given by Eq.
) (24) to Eq.(32), the total field energy can be rewritten as
w &
" wiw S(k=k"). 29 W= ! f C C*_ﬁwzs dk 33
2 KoK wiw (33
IV. EXPANSION OF THE FIELD ENERGY Furthermore, if we introduce normalized amplitudegs

Let us assume that the electromagnetic field is given as @d ag as

superposition of the fields with various wave vecthkrs > >
[ 1 dw sc N [ 1 Jdw 8C*
© %" N 2hw wio ™ %~ N2ko wiw k'’

E(r,t)= f_mdk Cre(k,r)e ", (34)
(25  then the total field energy of the electromagnetic field con-
B(r,t)= fw dk C,b(k,r)e e, sisting of incident and scattering fields can be expressed as
— *
Here C, denotes complex amplitudes, amk,r) and W_f ho(k)aca dk. (35)

b(k,r) are defined by Eq$4)—(9). In order to assure the real ) S
property of the field, E(r,t)=E*(r,t) and B(r,t) [Equation(35 shows that the total field is given by the sum

—B*(r,t), we introduce the definitions of the energies of independent harmonic oscillators.

C=C!, w(-K)=—w(k), (26) V. CONCLUSION

Considering a typical three-dimensional scattering elec-
tromagnetic field in a dispersive medium, we derived an or-
e(—k,r)=e*(k,r), b(—k,r)=b*(k,r), (27) thogonality relation between fields with different wave vec-

tors. Here the doublet of incident and scattering fields

which are shown by the analytic continuation of the fieldscomprised an orthonormal set. Expanding the electromag-

given by Eqs(4)—(9) with the wave vectok into those with  netic field energy stored in the whole space using the derived

and apply the equations

the wave vector-k [7]. orthogonality relation, we showed that the total field energy
The electric field energyVg stored in the medium is ex- was expressed as the sum of the energies of independent
pressed as harmonic oscillators. The above result will be useful for
studying the quantal interaction between a scattering electro-
d * aD(r,t) magnetic field and an atom.
EWEEJ E(r,t) ((n dr, (28) gnetic

APPENDIX A: AN EXPRESSION OF THE é FUNCTIONS
whereD(r,t) is the electric field displacement given by IN SPHERICAL COORDINATES

® ‘ Let us derive an expression of tléfunction in spherical
D(r,t)=f dk e(w)e(k,r)Cre '@, (290  coordinates. Under the Cartesian coordinates, a plane elec-
‘°° tromagnetic field in a dispersive dielectric can be written as

Using Eqgs.(25) and(29), we obtain(see Appendix §
1 : . 1 1 : .
e= ———gelk ot p— Zkxeelkroiot
1 I~k al(0— ')t ’ (1)8_(1),8, ’ ok (277)3 \(277)3 w
We=g | Gilie™ idkak’ | = e (A1)

(30) wheree is the unit vectork= (k,,ky ,k,) is the wave vector

which is a function of angular frequeney, and its absolute

In addition, the magnetic energd/g stored in the whole >l
square is given by

space is expressed as
k?=|k|?=w?eug. (A2)

1 : , 1
sz—f CiCrel@ e dk dk’f—b’-b*dr. (3D) , ,
2 Mo Using the equation
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J ek K rdr=2m5(k—k'), (A3)

we obtain the following equation:

2

fVSdI' Jw‘e , , ,
i(w—w’) wiw ( X X) ( Y y) ( z Z)
(9(,028 ,
9 C‘( IZ )1 (‘ ‘I)

whereS is defined by Eq(18), ande’ andb’ are defined by
Eq. (A1) with the wave vectok’ = (kj ,ky k).

Under spherical coordinates, E@\4) can be transformed
into

dw’e

JV.-Sdr B
i(w—w') oo k?sing,

8(k—k") (80— 05) (o~ o),

(A5)

where the wave vectorsk and k'’ are expressed
as  k=K(sinf,cosdgy,sin by Ssin ¢g,cos6y) and k'
=k’ (sin 6y cosey,sin 6y sin ¢,cosep), where cody, Cosdy,
coséy, and cosp, are the direction cosines d&f and k',
respectively.

On the other hand, the plane electromagnetic field given
by Eqg. (Al) can be expanded into the sum of the spherical

harmonic functions similar to Eq$4)—(9),

JV-sdr  [5Td¢[gSr?sin6de
i(w—w')_rﬂOC i(w—w')
%g 1S 2n+1
T K wiw o(k=k )E{nzl n(n+1)

n

+22 (n=m)!
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e —|)“(2n+1)] kn)
r \/— k
L (n—m)!m P{Y(cosfy)
mzzl (n+m)! sin 6y Pni(cosd)
><sinm(¢—¢o)}, (AB)
1
eg(k,r)=WF(AY1—BYZ), (A7)
1
e(ﬁ(k,r):WF(AY‘g_BY‘l), (A8)
b, (k,r)= —i)n (2n+1)—’“( ")
\/(2— o ikr
dP,(cosby)
d—eopn(COSG)
", (n—m)! dP(cosf)
+2 21 (! a6 PM(cos6)
X cosm( ¢ — (bo)} , (A9)
1 k
by(k,r)= \/(_)3 —F(BY3—AY,), (A10)
1 k
b(ﬁ(k,r):_WZF(BYl_AYZ). (All)

SubstitutingA, B, F, Y4, Y5, Y3, andY, defined by Egs.
(10—(16) into Eq. (A4) and using Eq(17), we have

P1(cosf,) PL(coshy)

dP;'(cosfy) dP}'(coshy)

v

=1 (n+m)! sinf,

siné,

)cosm(qﬁo— ¢6)} ] :

(A12)

do, do;

The results of Eqs(A5) and (A12) must be the same, so that we obtain an expression of thaction as
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E n(n+1) P(cosfg) Pr(cos6})
n m m ’ m m ’
(n—m)! [ Ppi(cosfy) Pyi(cosdy)  dPp(cosdy) dPr(cosey) ’
+221 (n+m)! ( sin g sin 6} dé, 6, cosm( o — )
o , ,
= sin 00‘ 3(0y— 6p) 8(bo— bo)- (A13)

APPENDIX B: THE CALCULATION OF V-S
The quantityS, defined by Eq(17) can be obtained from Eq#&4)—(9) as

1
Srzﬂ—o[(e;xb’;—e;sxb’;)ﬂe;xb;,,—ej,,xb;)] (B1)

!

k k
=—F’F*{(—(A’—M’C’)(B*—M*D*)+—, (A*—M*C*)(B’—M’D’))(Y1Y1+Y5Y3)
WHo w Mo

!

k k
+|——(N'D'=B")(N*C* —A*)+ ,—(N*D*—B*)(N’C’—A’))(Y§Y2+Y2Y4)
Wlo W fLo

!

k k
+|——(A'=M'C")(N*C* - A*) + ,—(N*D*—B*)(B’—M’D’))(Y1Y2+YéY4)
WHo @ fo

A

k
+|——(N'D'=B’)(B*=M*D*)+ ——— (A* —=M*C*)(N'C’' - A’ ) YY1+ Y,Y ], B2
o I g ) JNATRAS B2)

whereA’, B, C’, D', F’, M’, N, Y1, Y3, Y; andY, are given by replacing, ¢y, ¢o, n, andmin Egs.(11) and(13)—(16)
with k’, 65, ¢g, n’, andm’.
By using the orthogonality relations,

2 7 cosm(po— py), m=m’
f sinm’(¢— ¢g)sinm(¢— ¢o)ddp= f cosm’ (¢— pp)cosm(p— do)ddp= , (B3
0 0, m#m’,
2(n+m)!n(n+1
=[ dP}(cose) Py (cosé) —_ Pi(cosd) Pp(coss)| . ((n—m))l(z(n+1))’ —n
fo do do "™ sne sng ) Sn0do= ' (B4
0, n#n’,
and the identity
™ dP™(cos6) dP" (cos6)
m T L pm Nl gp=
fo (Pn,(cose) 40 + P, (cosf) 40 do=0, (B5)
we obtain the integral of Sr over a spherical surface;
fzwd F inade § 4m(2n+1) ( K (A'=M'C")(B* —M*D*)+ K (A*—M*C*)(B’~M'D’)
sin =- - - — (A% — -
0 ¢ oSr ni=1 Nh(n+1) wu ( o’ po
n m m !
(n—m)!m? P](cosb,) P'(cos6y) ,
szzl (n+m)!  siné, sin 6} osm( o= do)

!

k k
+|——(N'D'—=B’)(N*C* —A*)+ ——(N*D*—B*)(N'C'—A’")
WMo W fo

dP,(cosfy) dP,(coséy) 12> (n—m)! dPJ'(cosfy) dP]'(coss) ,
déo de} =1 (n+m)! d 6, d6; cosm( o= o) | (-

(B6)
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Considering further the following equations:

d " i n+1
N a[l’jn( r)]_l_ _sm r——2 T -
n+1
cos(kr—TTr)
lim B= lim j,(kr)=lim , (B8)
r—o r—o r—o kr
d
grlrhi?(kn)] ik
lim C=lm————=—limi""'——, (B9)
Few ikr o kr
—ikr
lim D= lim h{?(kr))= limi"*? , (B10)
r—o r—o r—oo kr
im ST kK, et S(k—k’ B11
rmv—ﬂ (k—k"), rmi(k_—k,)—ﬂ (k—=k"), (B11)
we obtain from Eq(B6),
fv.sdr  [3"d¢fISr?singde

(w—w')

i(w—w")

r—oe

n

(n—m)!'m? P(cos6,) P;'(cos6))
+ 2_ _ * N
(1+2|M[*-M-M >2m§1 (n+m)! sin 6, sin 6y

1 “ 2n+1
[ cosm(do— )

T 47K2 E

n=1 n(n+1)

n

n—m)! dP”(cosé,) dPT(cosé;,
Pl(cosby)Pi(cosby)+2 >, ( ) n! o) dPn( o

+(14+2|N|?>=N—N*)

)cosm( bo— ¢6)“

=1 (n+m)! dé, déy
w28
X S(k—k'). (B12)
wdw
Applying the equation
h(®(kr)+h@* (kr)= 2] (kr) (B13)
and substituting the equations from Ed?2),
2 0 k i 4 k 4 k
grLrin(kn] grlraknl  Gelrin(kn]
2IM|2Z=M—-M*= - - =0, (B14)
L@ kN[t @* (k)] e [th(kn)] - [rh@* (k)]
dr= " dr= " dr= " dr-= " a
2[j.(kr)]? in(kr in(kr
2INJ2— N—N* = — [in( 2)3 J(nz() ) Jzni ) _o, (B15
hZ (kn)yhi2™ (kr) - e (kn) - &% (k) |

into Eq. (B12), Eq. (B12) can be rewritten as

JV-Sdr 1 dw’e Sk—k! % 2n+1 p )Pl o
(o0 47k waw 0K 24 nins 1) | Pn(c0sto) Pr(cosbo)
(n—m | Pr(cosfy) Pi(coséy)  dPp(coséy) dPp(coséy) ,
+2mE:1 (n+m)! ( sin 6, sin 6} do, dé, cosm(o=do) | (- (B16)
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According to Eq.(A13) derived in Appendix A, the final result shown by Q1) is obtained,

JV-Sdr 1 Jw’e ) ) )
I(w_w/) = kzsinao wdw 5(k_k )5(00_00)5(¢0_¢0) (817)

APPENDIX C: THE ELECTRIC ENERGY IN A DISPERSIVE MEDIUM

From Eq.(29), the following equation can be obtained:

D oc _
i ;;’t)zfmdk Cie "M —iwe)e(k,r). (C1

Using Eqgs.(25) and(C1), ande(—k)=¢&(k)=¢&* (k) because of the lossless effect of the medium, we obtain

ab(r,ty 1/ dD* (r,t) . dD’'(r,t)
E(rt) — =5 | E' () —— B () ——
_1 ” I~k —i[w(k")—w(k)]t/; N ’
=5 ﬂcdkdk CyCyre (lwe—iw'e")e*(k,r)-ek’,r) (C2

and therefore, Eq30) can be derived as

D
WEzf drﬁmE(r,t)a (:'t)dt

1%
_1(= )~ “i[ek) - k)]t we—w's" )
—E 7ocdkdk Cka,e We (k,r)-e(k’,r)dr, (C3)
where the field energy density is assumed to vanish=at .
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